Combinatorial Limits of Transcription Factors and Gene Regulatory Networks in Development and Evolution
نویسنده
چکیده
Gene Regulatory Networks (GRNs) consisting of combinations of transcription factors (TFs) and their cis promoters are assumed to be sufficient to direct the development of organisms. Mutations in GRNs are assumed to be the primary drivers for the evolution of multicellular life. Here it is proven that neither of these assumptions is correct. They are inconsistent with fundamental principles of combinatorics of bounded encoded networks. It is shown there are inherent complexity and control capacity limits for any gene regulatory network that is based solely on protein coding genes such as transcription factors. This result has significant practical consequences for understanding development, evolution, the Cambrian Explosion, as well as multi-cellular diseases such as cancer. If the arguments are sound, then genes cannot explain the development of complex multicellular organisms and genes cannot explain the evolution of complex multicellular life.
منابع مشابه
What Transcription Factors Can't Do: On the Combinatorial Limits of Gene Regulatory Networks
A proof is presented that gene regulatory networks (GRNs) based solely on transcription factors cannot control the development of complex multicellular life. GRNs alone cannot explain the evolution of multicellular life in the Cambrian Explosion. Networks are based on addressing systems which are used to construct network links. The more complex the network the greater the number of links and t...
متن کاملMapping of Transcription Factor Binding Region of Kappa Casein (CSN3) Gene in Iranian Bacterianus and Dromedaries Camels
κ-casein is a glycosilated protein in mammalian milk that plays an essential role in the milk micelles. Control of κ-casein expression reflects this essential role, although an understanding of the mechanisms involved lags behind that of the other milk protein genes. Transcriptional regulation, a first mechanism for controlling the development of organisms, is carried out by transcription facto...
متن کاملMapping of Transcription Factor Binding Region of Kappa Casein (CSN3) Gene in Iranian Bacterianus and Dromedaries Camels
κ-casein is a glycosilated protein in mammalian milk that plays an essential role in the milk micelles. Control of κ-casein expression reflects this essential role, although an understanding of the mechanisms involved lags behind that of the other milk protein genes. Transcriptional regulation, a first mechanism for controlling the development of organisms, is carried out by transcription facto...
متن کاملA Study to Assess the Role of Gluten Encoded Genes and Their Regulatory Elements in Bread Making Quality of Wheat
Introduction: Bread making quality is affected by gluten genes and balance between their expressions. Hence, it is necessary for a comprehensive research to study and compare all gluten genes and their regulating elements simultaneously. Objectives: The aim of this study was to evaluate the molecular mechanism of bread quality in the level of coding genes and regulating elements via compa...
متن کاملStudy of MYB Transcription Factor Gene Expression in Some Bread Wheat Cultivars of Sistan Region, Iran
Drought, an abiotic stress, considered as one of the factors limiting food resources. The plant responses to adaptive to such a condition are accompanied with changes in the expression pattern of some functional as well as regulatory genes. The MYB proteins include a big family of transcription factors which are highly important in regulating development process and immunizing responses of plan...
متن کامل